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1 Introduction

This document provides a set of test problems that can be used for verification of cardiac
modeling software, i.e., to test that the model has been implemented in software correctly.
These test problems are a Regulatory Science Tool created by FDA’s Office of Science and
Engineering Laboratories (OSEL) within the Center for Devices and Radiological Health
(CDRH).

Cardiac electrophysiological or electro-mechanical simulation software typically solve well-
established equations that govern the propagation of electrical waves through the heart.
One activity required for demonstrating the credibility of a computational model is code
verification [I]. Code verification is the process of determining if a mathematical model, and
algorithms for solving the model, have been correctly implemented in the software. However,
code verification is challenging with complex models. The tool provides a set of test problems
with known analytic solutions, which cardiac model developers can solve using their software
and thereby test if the electrophysiology modeling software has been implemented correctly.

Test problems are provided for the monodomain, bidomain and bidomain-with-bath equa-
tions. The monodomain and bidomain equations are sets of partial differential equations
coupled to ordinary differential equations that have been used for many decades to model
electrical activity in the heart. The bidomain-with-bath equations are a related set of equa-
tions which govern electrical fields generated in the heart and surrounding torso.

Nine test problems are provided in this document, for testing the following computational
models: monodomain in 1D, 2D and 3D; bidomain in 1D, 2D and 3D; bidomain-with-bath
in 1D, 2D, and 3D. Values of each of the following is specified in each test problem:

e The geometrical domain

e Tissue conductivities, surface-area-to-volume ratio, capacitance

e Sub-model of cellular dynamics

Initial conditions
e Boundary conditions

e Stimulus current (zero)
Also provided for each test problem is:
e Exact analytic solution of test problem.

The user (cardiac model developer) should specify each of the above inputs in their software,
solve the model, and compare their solution with the exact solution provided. They can then
confirm the correct implementation of their software by verifying that the error converges to
zero at the expected convergence rate as the spatial and temporal discretization parameters
are reduced.

All test problems where originally published in [6]; see that article for background infor-
mation and discussion. Note that the bidomain-with-bath problems are all essentially 1D
problems, in that the solution is dependent on z only, and not y or z, regardless of dimen-
sion. Construction of genuinely 2D /3D model problems for the bidomain-with-bath model is
an open problem. See [6] for results of evaluating the cardiac solver Chaste [4] using these
test problems, including error norms and theoretical orders of convergence appropriate for
the numerical schemes used in Chaste. Also see [3] for a second example of a cardiac solver
tested using these test problems.



2 Mathematical models

Let €2 denote the geomerical domain, with boundary 02. The monodomain equations are
a set of differential equations governing the propagation of electrical waves through excitable
tissue. They are a simplification of the bidomain equations (below) under the assumption
that intra- and extra-cellular conductivities are proportional. The monodomain equations
are [2]:

X (Cm%‘; + Iion(u7 V)) -V (UVV) = I(Stim)7 (1)
Oou
o~ fwv), (2)

where V' = V (¢,x) is the transmembrane voltage, C,, is the specific capacitance of the cell
membrane, X is the membrane surface-area-to-volume ratio, o is the bulk conductivity and
IG8m) §g a stimulus current. u = u(t, x) is a vector of state variables representing the current
state of the cell at location x, and [, and f are prescribed functions, which together make
up the cell model. Typical boundary conditions are

n-(cVV)=0 on 09, (3)

where n is the outward-pointing unit normal vector. The system of equations 7 is then
completed by specifying suitable initial conditions for V and u.

The bidomain equations govern the propagation of the transmembrane voltage V' and the
extracellular potential ¢.. They are [2]:

ov stim
X (Cmat + ion(u, V)) V- (V (V) = I, (4)
V- ((0i+0) Voo +iVV) =~ (5)
Ou
where o; and o, are intra- and extra-cellular conductivity tensors, I i(s“m) is an intra-cellular
volume stimulus current per unit volume, and IEZE;T) = Ii(smm) 1 18 where 18 s
an extra-cellular volume stimulus, usually implicitly chosen so that It(Z:;T) = 0. Typical

boundary conditions for and are the specification of zero current across the boundary:

n-(o;V\V+g¢)) = 0 onodd (7)
n-(c.Voé.) = 0 on Of) (8)

As with the monodomain equations, initial conditions for V' and u need to be specified. ¢,
does not require initial conditions and is only determined up to a constant function of time.

Finally, the bidomain-with-bath equations are used to model the case of cardiac tissue
contained in a conductive bath (for example, the human torso). Let €, represent the bath
domain, assumed to surround . V is defined only in Q (i.e. only in the tissue) and 7@
still hold within Q. However ¢, is now defined everywhere on Q U, (i.e. throughout the
tissue and the bath), and outside the tissue satisfies

V- (0, Voe) =0 inQy, (9)

where o}, is the conductivity of the bath (usually a scalar). The boundary/interface conditions
are: (zero flux of ¢; across 02); continuity of ¢, across 0€2; and continuity of the extracel-
lular current across 9Q)—the extracellular current flowing out of the tissue, 0.V, - n, should



be equal to that entering the bath, 0,V - n, everywhere on 9€). The remaining boundary
condition on the edge of the bath domain is:

n- (0, Vo) =I5 on 09,\00. (10)

where I](;urf) is a stimulus current (per unit area) applied to the edge of the bath domain,
and may be used to represent defibrillating electrodes. The prescribed function I Surf) should
satisfy f Igurf) dS = 0 for a solution to exist (conservation of current), or alternatively a
Dirichlet boundary condition on ¢, should be applied somewhere on 9€2;\9f2, corresponding
to a ground electrode [5].

The following non-physiological, three-variable cell model has been constructed for use in all
the model problems: u = (uy,us,us), specified by

(’U,l + us — V)ng + %(U1 + us — V)u%(V — U3)
—(U1 + usz — V)u% (11)
0

f(u,V)

Lon(w,V) = f%’"(ul Fug — VIRV —ug) + ﬁ(VX—u?))

where 3 is a free parameter.



3 Test problems with exact solutions

3.1 Test problems for monodomain solvers
3.1.1 Monodomain in 1D

Let F(x) = cos(rz) and G(x) = 1 + z. Solve the monodomain equations (I)—(2) using the
following inputs:

e Domain: Q = [0,1].

e Surface-area-to-volume ratio: y = 3

e Capacitance: C,, =2

e Bulk conductivity: o = 1.1 x 72

e Cell model: f using 8 = —1.1

e Stimulus current: 7GH™) =0
e Initial conditions: V(0,x) = F(x) and u(0,x) = (G(x) + F(x), G(x)"'/2,0)

e Boundary conditions: zero flux (3|

The exact solution is:

V(t,x) = (1+1)°F(x)

ur(t,x) = (1+1)G(x)+ (1+1)Y2F(x)
us(t,x) = (1+6)~(G(x)"?
us(t,x) 0



3.1.2 Monodomain in 2D

Let F(x) = cos(mz) cos(2my) and G(x) = 1 + zy?. Solve the monodomain equations ([I))—(2)
using the following inputs:

e Domain: Q = [0,1] x [0, 1]
e Surface-area-to-volume ratio: y = 3

e Capacitance: C,, = 2

Bulk conductivity: o = 72 [ 1.1 0 ]

0 1.2

Cell model: 7 using 8 = —5.9

e Stimulus current: J6Hm) = (

Initial conditions: V/(0,x) = F(x) and u(0,x) = (G(x) + F(x), G(x)~/2,0)

e Boundary conditions: zero flux (3))

The exact solution is:

V(t,x) = (1+1)?F(x)

w(tx) = (1+1)Gx) +(1+4)72F(x)
up(t,x) = (1+1)71(G(x)
us(t,x) = 0



3.1.3 Monodomain in 3D

Let F(x) = cos(mx) cos(2my) cos(37z) and G(x) = 1 + zy?z3. Solve the monodomain equa-
tions 7 using the following inputs:

e Domain: Q =[0,1] x [0,1] x [0, 1]

e Surface-area-to-volume ratio: y = 3

e Capacitance: C,, = 2

1.1 0 0
e Bulk conductivity: o = 72 0 1.2 0
0 0 0.3

Cell model: 7 using 8 = —8.6

Stimulus current: 76t = (

Initial conditions: V(0,x) = F(x) and u(0,x) = (G(x) + F(x),G(x)"/2,0)

Boundary conditions: zero flux (3|

The exact solution is:

Vit.x) = (1+0)V2F(x)

ui(t,x) = (1+6)G(x)+ (1+1)/?F(x)
uwt,x) = 14+ (G(x)?
us(t,x) = 0



3.2 Test problems for bidomain solvers
3.2.1 Bidomain in 1D

Let F(x) = cos(mz), G(x) = 1+ and k = 1/v/2. Solve the bidomain equations (4)-(6)
using the following inputs:

e Domain: Q = [0,1].

e Surface-area-to-volume ratio: x = 3

e Capacitance: C,, = 2

e Intracellular conductivity, o; = 1.1 x 72
e Extracellular conductivity: o. = (1 — k)o;/k
e Cell model: (11)-(12)) using B = —1.1(1 — k)
e Stimulus currents: Ii(Stim) = IESE;T) =0

e Initial conditions: V(0,x) = F(x) and u(0,x) = (G(x) + F(x), G(x)~'/2,0)
e Boundary conditions: zero flux 7

The exact solution is:

V(t,x) = (1+t)Y2F(x)

be(t,x) = —k(1+t)V2F(x)+C(t)
ui(t,x) = (1+8)G(x)+ (1+1)'/?F(x)
up(t,x) = (1+)7(G(x) "/
us(t,x) 0

where C(t) is an arbitrary function of time. The specific implementation of the bidomain
equations in the software tested will determine C(t) in the simulated ¢.. For example, a
numerical scheme that imposes zero mean, fﬂ Oe d3x = 0, implies that C(t) =0.



3.2.2 Bidomain in 2D

Let F(x) = cos(mx) cos(27y), G(x) = 1 + xy? and k = 1/v/2. Solve the bidomain equations
7@ using the following inputs:

e Domain: Q = [0,1] x [0, 1]

e Surface-area-to-volume ratio: y = 3

e Capacitance: C,, = 2

Intracellular conductivity: o; = 72 [ L1 0 }

0 1.2

Extracellular conductivity: o, = (1 — k)o; /k
Cell model: (1I)—(12)) using 8 = —5.9(1 — k)

Stimulus currents: Ii(s“m) = ]t(zgln) -0

e Initial conditions: V(0,x) = F(x) and u(0,x) = (G(x) + F(x), G(x)"'/2,0)

Boundary conditions: zero flux 7

The exact solution is:

Vit,x) = (1+t)2F(x)

be(t,x) = —k(1+1)Y2F(x)+C(t)
u(t,x) = (1+8HGx)+ (1+t)Y2F(x)
up(t,x) = (1+6)7(G(x) "/
us(t,x) 0

where C(t) is an arbitrary function of time. The specific implementation of the bidomain
equations in the software tested will determine C(t) in the simulated ¢.. For example, a
numerical scheme that imposes zero mean, fQ ¢ d*>x = 0, implies that C(t) =0.

10



3.2.3 Bidomain in 3D

Let F(x) = cos(mz) cos(2my) cos(372), G(x) = 1 + 23?23 and k = 1/+/2. Solve the bidomain
equations 7@ using the following inputs:

e Domain: Q = [0,1] x [0,1] x [0, 1]

e Surface-area-to-volume ratio: y = 3

e Capacitance: C,, = 2
Cell model: (I)—(12)) using 8 = —8.6(1 — k)

1.1 0 0
Intracellular conductivity: o; =772 | 0 1.2 0
0 0 0.3

e Extracellular conductivity: o. = (1 — k)o;/k
e Stimulus currents: I}Stim) = It(:;rf) =0

Initial conditions: V(0,x) = F(x) and u(0,x) = (G(x) + F(x),G(x)~/2,0)

e Boundary conditions: zero flux (7)—(8)

The exact solution is:

V(it,x) = (1+t)Y2F(x)

be(t,x) = —k(1+1)Y2F(x)+C(t)
ur(t,x) = (14+H)Gx)+ (1+1)Y2F(x)
up(t,x) = (1+)7(G(x) "/
usz(t,x) 0

where C(t) is an arbitrary function of time. The specific implementation of the bidomain
equations in the software tested will determine C(t) in the simulated ¢.. For example, a
numerical scheme that imposes zero mean, [, ¢e d®x = 0, implies that C(t) = 0.

11



3.3 Test problems for bidomain-with-bath solvers

3.3.1 Bidomain-with-bath in 1D

Let F(x) = cos(rz), G(x) = 1+ z, k = 1/v/2 and a = 0.01. Solve the bidomain-with-bath

model using the following inputs (in the below s, denotes o,):

o Using Quy =[-1,2], (p={x€Quu:—-1<z<0orl<z<2}and Q ={x€ Qu:

0<z<1}
e Surface-area-to-volume ratio: y = 3

e Capacitance: C,, = 2

e Intracellular conductivity, o; = 1.1 x 7~

2

e Extracellular conductivity: o. = (1 — k)o;/k

e Bath conductivity: o, = s./2
e Cell model: (1I)-(12) using B = —1.1(1 — k)

e Stimulus currents: I

(stim) _ I(stim) -0

% total

e Initial conditions: V'(0,x) = F(x) — ¢ and u(0,x) = (G(x) + F(x), G(x)~1/? —az)

Se

e External stimuli:

—a ifx=-1
150 — o ifz=2

0 otherwise

The exact solution of this problem is:

Vtx) = (1+0V2F(x) - 2o
Se

—k(1+ )2+ 224+ C(t) if —1<2<0
Pe(t,x) = —k(1 +t)Y/2% cos(mx) + S+ C(1) ifo<z<1

—k(14t)'/2 cos(n) + SHo@-1)4+C@F) fl<z<2
u(t,x) = (14+1)G(x)+(1+1)Y2F(x)
us(t,x) = (1467 (G(x)

«
us(t,x) = ——=x

Se

where C(t) is an arbitrary function of time.

Ground electrode variant: as above except with the Dirichlet boundary ¢ = 0onxz = —1,
with I](;urf) =qaqonzx=2and Isurf) = 0 on the other boundaries. Then the exact solution

is as above with C(t) = k(1 +)'/2 + &.

12



3.3.2 Bidomain-with-bath in 2D

Let F(x) = cos(mzx) (note: unlike the other 2D test problems, this should just be a function
of z, not z and y), G(x) = 1+ zy? k = 1/v/2 and o = 0.01. Solve the bidomain-with-bath
model using the following inputs (in the below s, denotes (o.)11):

o Using Quy = [-1,2] x [0,1], @y = {x € Quu : =1 < 2 < 0orl <z < 2} and
QZ{XEQQH:OSxSI}

e Surface-area-to-volume ratio: y = 3

e Capacitance: C,, = 2

e Intracellular conductivity: o; = 72 [ 11 0 }

0 1.2
e Extracellular conductivity: o. = (1 — k)o;/k
e Bath conductivity: o, = s./2

e Cell model: (1I)—(12) using B = —1.1(1 — k)
_ I(stim) —0

. . 7(stim)
e Stimulus currents: I; total

e Initial conditions: V(0,x) = F'(x) — $* and u(0,x) = (G(x) + F(x), G(x)~1/? —az),

Se

e External stimuli:
—a ifz=-1
I = ifr=2

0 otherwise

The exact solution of this problem is:

Vtx) = (1+8)V2Fx)— 2
Se
—k(1+ )2+ 224+ C(t) if —1<2<0
de(t,x) = —k(1 +t)Y/2% cos(mx) + Tz +C(1) ifo<z<1
—k(14t)"/2 cos(n) + cta@-1)+C@1) fl<z<2
u(t,x) = (14+6)Gx)+ (1+1)Y2F(x)
u(t,x) = (147 (G(x)
us(t,x) = %
3\ - Se

where C(t) is an arbitrary function of time.

Ground electrode variant: as above except with the Dirichlet boundary ¢. = 0on x = —1,

with Igurf) =qaqonzx=2and Isurf) = 0 on the other boundaries. Then the exact solution
is as above with C(t) = k(1 +t)1/2 + 2,

13



3.3.3 Bidomain-with-bath in 3D

Let F(x) = cos(mx) (note: unlike the other 3D test problems, this should just be a function
of z, not x, y and 2), let G(x) = 1 4+ xy?2%, k = 1//2 and a = 0.01. Solve the bidomain-
with-bath model using the following inputs (in the below s, denotes (o¢)11):

e Using Qau = [-1,2] x [0,1] x [0,1], @y = {x € Qau : -1 <@ < 0or 1 <z <2} and
QZ{XEQQH:OSxSI}
e Surface-area-to-volume ratio: y = 3

e Capacitance: C,, = 2

1.1 0 0
e Intracellular conductivity: o; = 72 0 1.2 0
0 0 0.3

e Extracellular conductivity: o, = (1 — k)o; /k
e Bath conductivity: o, = s./2
e Cell model: (1I)—(12) using 8 = —1.1(1 — k)

e Stimulus currents: Ii(Stim) = It(zzla’f) =0

e Initial conditions: V(0,x) = F(x) — 22 and u(0,x) = (G(x) + F(x), G(x)~ /2, —az),

Se Se

e External stimuli:

—a ifx=-1
IS‘”” =qa ifz=2
0 otherwise
The exact solution of this problem is:
Vit,x) = (1+8)V2F(x) - Za
Se
—k(1+ )2+ 224+ Ct) if —1<x<0
Pe(t,x) = —k(1L+1)"/2cos(ma) + La+ C(t) ifo<az<1
—k(14t)"/2 cos(n) + SHol@-1)+C@F) fl<z<2
ur(t,x) = (1+t)G(x)+ 1+t F(x)
w(tx) = (1+6)7(G)?
us(t,x) = ~ %y
30 - S

where C(t) is an arbitrary function of time.

Ground electrode variant: as above except with the Dirichlet boundary ¢ = 0onz = —1,
with I](;urf) =oaonz=2and Igurf) = 0 on the other boundaries. Then the exact solution

is as above with C(t) = k(1 +¢)1/% + &,

b

14
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