

User Manual:
2D Human Induced Pluripotent Stem Cell-derived
Cardiomyocyte Cardiac Contractility Modulation Tool:
2D hiPSC-CM CCM Tool

Tool Reference

RST Reference Number: RST24CV08.01

Date of Publication: 08/08/2023

Recommended Citation: U.S. Food and Drug Administration. (2024). *2D Human Induced Pluripotent Stem Cell-derived Cardiomyocyte Cardiac Contractility Modulation Tool: 2D hiPSC-CM CCM Tool (RST24CV08.01)*. <https://cdrh-rst.fda.gov/2d-human-induced-pluripotent-stem-cell-derived-cardiomyocyte-cardiac-contractility-modulation-tool>

For more information

[Catalog of Regulatory Science Tools to Help Assess New Medical Devices](#)

Disclaimer

About the Catalog of Regulatory Science Tools

The enclosed tool is part of the [Catalog of Regulatory Science Tools](#), which provides a peer-reviewed resource for stakeholders to use where standards and qualified Medical Device Development Tools (MDDTs) do not yet exist. These tools do not replace FDA-recognized standards or MDDTs. This catalog collates a variety of regulatory science tools that the FDA's Center for Devices and Radiological Health's (CDRH) Office of Science and Engineering Labs (OSEL) developed. These tools use the most innovative science to support medical device development and patient access to safe and effective medical devices. If you are considering using a tool from this catalog in your marketing submissions, note that these tools have not been qualified as [Medical Device Development Tools](#) and the FDA has not evaluated the suitability of these tools within any specific context of use. You may [request feedback or meetings for medical device submissions](#) as part of the Q-Submission Program.

For more information about the Catalog of Regulatory Science Tools,
email RST_CDRH@fda.hhs.gov.

2D Human Induced Pluripotent Stem Cell-derived Cardiomyocyte Cardiac Contractility Modulation Tool: 2D hiPSC-CM CCM Tool

For technical details regarding cell culture (monoculture), electrical apparatus, and stimulation:

Feaster, T. K., Casciola, M., Narkar, A., Blinova, K. (2022). Evaluation of Cardiac Contractility Modulation Therapy in 2D Human Stem Cell-Derived Cardiomyocytes. *J. Vis. Exp.* (190), e64848, [doi:10.3791/64848](https://doi.org/10.3791/64848)

This publication describes the experimental details for maintenance and culture of 2D hiPSC-CMs monolayers as well as the application of nonexcitatory electrical stimulation (i.e., CCM). Step-by-step video and instructional protocol are provided. Likewise, the extension of CCM stimulation to a patient-specific disease model of Dilated Cardiomyopathy (DCM) is demonstrated.

For technical details regarding cell culture (co-culture), electrical apparatus, and stimulation:

Narkar, A., Feaster, T. K., Casciola, M., & Blinova, K. (2022). Human in vitro neurocardiac coculture (ivNCC) assay development for evaluating cardiac contractility modulation. *Physiological Reports*, 10, e15498. [doi:10.14814/phy2.15498](https://doi.org/10.14814/phy2.15498)

This publication describes the experimental details for maintenance and culture of 2D hiPSC-CM (cardiomyocyte) and hiPSC-MN (Motor Neuron) monolayers (i.e., ivNCC, in vitro neurocardiac co-culture). Contractile response to nonexcitatory electrical stimulation (i.e., CCM) is described to elucidate cardiac-neuronal interplay and peripheral nervous system contribution. Detailed description of the electrical set up and pulse parameters are provided. Demonstration of pharmacological characterization is presented with, muscarinic agonist and β -adrenergic antagonist, to demonstrate functional coupling and elucidate potential mechanisms, respectively.

For technical details regarding cell culture (monoculture), electrical apparatus, and stimulation:

Feaster, T. K., Casciola, M., Narkar, A., and Blinova, K. (2021). Acute effects of cardiac contractility modulation on human induced pluripotent stem cell-derived cardiomyocytes. *Physiol. Rep.* 9, e15085. [doi:10.14814/phy2.15085](https://doi.org/10.14814/phy2.15085)

This publication describes the experimental details for maintenance and culture of 2D hiPSC-CMs monolayers including the experimental conditions necessary to elucidate nonexcitatory electrical stimulation (i.e., CCM) response under these conditions (i.e., flexible substrate and submaximal extracellular calcium). Moreover, the methodology to evaluate contractile properties is described as well as additional cardiac excitation- contraction coupling readouts including electrophysiology (i.e., action potential) and intracellular calcium handling. Demonstration of pharmacological characterization is presented with β -adrenergic antagonist and extracellular calcium challenge to evaluate potential mechanisms. Detailed description of the electrical set up, pulse parameters and numerical electric field modeling are provided.