

Appendix: Extractables Screening Protocols for Fused Filament Fabricated ABS Containing Additive-manufactured Devices

A. Protocol for volatile and semi volatile extractable analysis by GC/MS

- 1. Evaluate the GC/MS performance with vendor recommended standard operating procedures (tune evaluation with GC/MS tuning standard perfluorotributylamine (PFTBA).
- Prepare reference standard (as listed in table 1) calibration samples in isopropyl alcohol with the concentration range between 100 to 5000 μgL-1. Inject standard samples and determine the linear dynamic range for the samples. GC/MS parameters are listed on Table 1.
- 3. Bring the refrigerated extracts to room temperature (~30 min). Transfer 100 µL from each sample and blank extract to GC/MS vials and close the caps.
- 4. Pre inject few of the extracts to the GC/MS system to check if samples need to be diluted. A 10-50X dilutions may be required to bring the concentrations within the dynamic range.
- 5. Inject blank samples in between each extract sample runs.

Parameters	Set Values
Instrument	Agilent 7890B GC-5977B MS
Column	Agilent DB-5MSUI 30m x 0.25um x 0.25um
Inlet Conditions	200 °C, split (5:1), purge flow 3.0 mL/min, on at 2 min
Inlet Liner	Split Liner
Helium (Typically ≥99.9995%) Flow Rate	1.2 mL/min
Oven Conditions	Initial temperature of 50 °C for 3 minutes then ramped to 315 °C at a rate of 12 °C/min and held at 315 for 15 minutes
Injection Volume	1 μL or 0.5 μL (water)
Transfer Line Temperature	250 °C
Ionization Mode	EI
Mass Range	m/z 50.0 to 1050

Table 1: GC-MS instrument parameters

Parameters	Set Values
Ion Source Temperature	250 °C
MS Quad temperature	150 °C
Reference standards used for semi quantification	bis(2-Ethylhexyl) phthalate (DEHP) Dimethyl phthalate Dibutyl sebacate Diphenyl phthalate
Calibration range	100 to 5000 μgL-1

GC/MS data analysis

- Use Agilent Unknown Analysis software for the identification and semi-quantification of the compounds detected in GC/MS analysis of the sample extracts. Details on how to use the Unknown analysis software can be found on their website.
- Use NIST 1A v17 Mass Spectral Library (National Institute of Standards and Technology, Gaithersburg, MD) for the identification.
- Match factor of >80% can be used for the tentative identification. Expert judgment must be used in selecting the best match for the detected compounds.
- Only report the presence of a compound if it is identified in at least two of the 3 extract sample replicates.
- External calibration curves of the selected reference standards can be used for semi quantification. Select "average RF of the closest standard" for the semi-quantification of the identified compounds. (semi-quantitation will be performed using the calibration curve of the standard closest to the analyte. Other options can be selected based on the user preference and the experimental logistics).
- Use blank subtraction option to remove the background interferences from the quantifiable values.
- After all the samples have been processed, export the results as .CSV file for further evaluation/report generation.

B. Protocol for semi volatile and non-volatile extractable analysis by LC/MS

- 1. Tune and calibrate the LC/MS with vendor recommended standard operating procedures.
- Prepare reference standard calibration samples (diethyl phthalate, stearic acid, and Irganox 1010) in isopropyl alcohol with the concentration range between 100 to 10000 µgL-1. Inject standard samples and determine the linear dynamic range for the samples. LC/MS parameters are listed on Table 2.

- 3. Bring the extracts to room temperature. Transfer 100 μ L from each sample and blank extract to LC/MS vials and close the caps.
- 4. Pre inject a few of the extracts to the LC/MS system to check if samples need to be diluted. Dilute the samples with 1:1 hexane: Isopropyl alcohol mixture to appropriate concentration. 10-25X dilutions may be required to bring the concentrations within the dynamic range.
- 5. Inject blank samples in between each extract sample runs.

Table 2: LC-MS instrument parameters

Parameters	Set Values	
Instrument	Agilent 6540 B QTOF with Agilent 1260 Nano LC with diode array detector	
LC parameters		
Column	120 Poroshell Stable Bond C18 (3*100 2.7 μm)	
Column Temperature	35 °C	
Injection Volume	10.0 μL	
Flow Rate	0.8 mL/min	
Mobile Phase A	0.1% Formic Acid in H2O (positive): 10mM Ammonium Acetate in H2O (negative)	
Mobile Phase B	0.1% Formic Acid in Acetonitrile (positive): Acetonitrile (negative)	
Mobile Phase Gradient	20% B at 0 min, 100% B at 4.7 min–18.3 min, and 20% B at 19 min to 30 min	
Stop Time	30 minutes	
MS parameters		
Ionization Mode	ESI	
Polarity	Positive and Negative Ion	

Parameters	Set Values
Mass Range	m/z 100-1700
Dual AJS ESI	
Gas Temp (oC)	300
Drying Gas(L /min)	8.0
Nebulizer(psig)	50
Sheath Gas Temp (oC)	400
• Sheath Gas Flow (L/min)	12
• VCap (V)	3500
Nozzle Voltage (V)	1000
 Capillary(μA) 	0.125
 Chamber(μA) 	18.35
MS TOF	
Fragmentor (V)	140
Skimmer (V)	65

U.S. Food & Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 www.fda.gov

Parameters	Set Values
• Oct 1RF Vpp(V)	750

LC/MS data analysis

- Use Agilent MassHunter Qualitative analysis software coupled with the Agilent Extractables and Leachables (E&L) Personal Compound Database and Library (PCDL) for the identification of the compounds detected in LC/MS analysis of the sample extracts. Details on <u>how to use the Agilent</u> <u>MassHunter Qualitative Analysis software</u>External Link DisclaimerExternal Link Disclaimer can be found on their website.
- Setup mass accuracy for <10 ppm for the identification. Match factor of >80% can be used for the tentative identification. Expert judgment must be used in selecting the best match for the detected compounds.
- Only report the presence of a compound if it is identified in at least two of the 3 extract sample replicates.
- Use a five-point calibration curve per reference standard to perform semi- quantification. Use blank subtraction option to remove the background interferences from the quantifiable values. A: Protocol for sample extraction
- 1. Cut the samples only, if necessary, based on extraction logistics or provided sample dimensions. Analyzing the complete device without manipulation is preferred.
- 2. Follow the ISO 10993-12 recommendation to get the sample to extraction volume ratio.
- 3. Nondestructive swelling is acceptable if the extraction solvent is recoverable for the analysis.
- 4. If a precipitate is formed, a re-dissolution is recommended prior to sample analysis per ISO-10993-18 (2020) guidelines.
- 5. Particulates should be removed prior to extract analysis. Care should be taken to ensure that the particulate removal method will not alter the extractables profile of the device.